Due to the unique optical and electronic properties of conjugated polymers, much research has been conducted to study the effect of the incorporation of electron-transporting materials on the polymer blends' compatibility and their capability for use in optoelectronic devices. In this work, to characterize the optoelectronic properties of blend thin films of poly [2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) with benzothiadiazole (BT), polymer lightemitting diodes (PLEDs) with single-emission layers of MEH-PPV + BT blends have been fabricated. The influence of MEH-PPV + BT blend weight ratios over ITO/PEDOT:PSS/MEH-PPV + BT/Al PLEDs performances, e.g., lifetime, turn-on voltage, and current density-voltage (J-V) characteristics, has been studied. According to the obtained results, the turn-on voltage of the devices successfully decreased with the addition of the BT as an electronic transportation material. At an optimum condition, we obtained a turn-on voltage as low as 5 V and a lifetime of about 190 h for a device incorporating 65% BT. The logarithmic plots of the J-V characteristics of the fabricated devices showed a power law behavior (J ∝ V k+1 ) with three distinct regions. The J-V characteristics have been explained by the Fowler-Nordheim (FN) tunneling model. It was found that the hole-injection barrier height decreases with increasing BT content in the range of 0-65%. According to the obtained results, in all of our investigations, the electroluminescence (EL) originated exclusively from the MEH-PPV material, even for the high BT contents.