His research is focused on computational plasma modeling using spectral and lattice Boltzmann methods for studying plasma turbulence and plasma jets. His research has also included fluid physics and electric propulsion using Lattice-Boltzmann methods, spectral element methods, Weighted Essentially Non-Oscillatory (WENO), etc. Past research includes modeling single and multi-species plasma flows through ion thruster optics and the discharge cathode assembly; computer simulations of blood flow interacting with blood vessels; modeling ocean-air interaction; reacting flow systems; modeling jet engine turbomachinery going unstable at NASA for 6 years (received NASA Performance Cash awards). Dr. Richard is involved in many outreach activities: e.g., tutoring, mentoring, directing related grants (for example, a grant for an NSF REU site). Dr, Richard is active in professional societies (American Physical Society (APS), American Institute for Aeronautics and Astronautics (AIAA), etc.), ASEE, ASME. Dr. Richard has authored or co-authored about 35 technical articles (about 30 of which are refereed publications). Dr. Richard teaches courses ranging from first-year introductory engineering design, fluid mechanics, to space plasma propulsion.