Peroxynitrite (ONOO−) is a reactive oxygen species (ROS) that takes part in the oxidation-reduction homeostasis while at the same time being responsible for activating numerous pathological pathways. Accordingly, monitoring the dynamic changes in ONOO− concentration has attracted a great deal of attention, undoubtedly prompting the development of appropriate fluorescent chemosensors. Herein, we developed a novel N,O-chelated diphenylboron-based fluorescent probe (DPB) for ONOO− featuring high selectivity, a quick response time (2.0 min), and a low detection limit (55 nM). DPB incorporates tetra-coordinated boron in the center of the fluorogenic core and a three-coordinated boron from the pinacolphenylboronate fragment, which acts as the recognition site for ONOO−. As confirmed by HR-MS and 1H NMR, the interaction of DPB with ONOO− led to an oxidative cleavage of pinacolphenylboronate moiety to produce strongly emissive derivative DPB-OH. The fluorescence enhancement is likely a result of a substantial deactivation of non-radiative decay due to the replacement of the bulky pinacolphenylboronate moiety with a compact hydroxyl group. Importantly, DPB probe exhibits negligible cytotoxicity and favorable biocompatibility allowing for an efficient tracking of ONOO− in living cells and zebrafish. Overall, the current study does not only represents the first N,O-chelated diphenylboron-based fluorescent probe for a specific analyte, but also serves as a guideline for designing more potent fluorescent probes based on the chemistry of boron chelates.