2022
DOI: 10.3390/ijerph192315685
|View full text |Cite
|
Sign up to set email alerts
|

Body Composition Profiles of Applicants to a Physical Education and Sports Major in Southeastern Mexico

Abstract: This study aimed to determine the body composition profile of candidates applying for a Physical Education and Sports major. 327 young adults (F: 87, M: 240) participated in this cross-sectional study. Nutritional status and body composition analysis were performed, and the profiles were generated using an unsupervised machine learning algorithm. Body mass index (BMI), percentage of fat mass (%FM), percentage of muscle mass (%MM), metabolic age (MA), basal metabolic rate (BMR), and visceral fat level (VFL) wer… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
4
0
2

Year Published

2022
2022
2024
2024

Publication Types

Select...
4

Relationship

1
3

Authors

Journals

citations
Cited by 4 publications
(6 citation statements)
references
References 33 publications
0
4
0
2
Order By: Relevance
“…No obstante, se observó una mayor proporción de mujeres en el perfil con menor autoconcepto físico. El hecho que el sexo tenga alta relevancia en la proporción de sujetos en los perfiles también ha sido demostrado previamente por nuestro grupo de investigación en cuanto a la composición corporal (Gasperin-Rodriguez et al, 2022) y la aptitud física (Bonilla, Sanchez-Rojas, et al, 2022) en estudiantes universitarios latinoamericanos. De manera interesante, los estudiantes de Psicología representan la mayor proporción (75.89%) de participantes agrupados en el Perfil 2.…”
Section: Discussionunclassified
See 1 more Smart Citation
“…No obstante, se observó una mayor proporción de mujeres en el perfil con menor autoconcepto físico. El hecho que el sexo tenga alta relevancia en la proporción de sujetos en los perfiles también ha sido demostrado previamente por nuestro grupo de investigación en cuanto a la composición corporal (Gasperin-Rodriguez et al, 2022) y la aptitud física (Bonilla, Sanchez-Rojas, et al, 2022) en estudiantes universitarios latinoamericanos. De manera interesante, los estudiantes de Psicología representan la mayor proporción (75.89%) de participantes agrupados en el Perfil 2.…”
Section: Discussionunclassified
“…La mayor parte de la varianza de los datos es explicada por los componentes principales y el número de componentes nos indica la existencia o no de diversidad en el tipo de patrones. Como hemos desarrollado anteriormente (Bonilla, Peralta-Alzate, et al, 2022;Bonilla, Sanchez-Rojas, et al, 2022;Cardozo et al, 2021;Gasperin-Rodriguez et al, 2022), los participantes se subdividieron en clusters mediante aprendizaje automático no supervisado para identificar puntos de datos similares (agrupaciones naturales) y extraer los patrones de perfil. Para esto se ejecutó un análisis de Agrupación Jerárquica en Componentes Principales utilizando la función HCPC del paquete 'FactoMi-neR' en el entorno de programación R (R Statistics, versión 4.0.5, Inc, Colorado, USA).…”
Section: Análisis De Datosunclassified
“…Eta-squared (η 2 ) was used to report the magnitude of differences assuming 0.09, 0.14, and >0.22 as a small, medium, and large effect size [28]. As we have performed previously [29][30][31][32], the participants were subdivided into clusters using unsupervised machine learning to identify similar data points (natural groupings) and extract the profile patterns. We used the partitioning around the medoids (PAM) algorithm, also known as k-Medoids clustering which, unlike the k-means algorithm, considers the median as the center of a cluster, thus, it is more robust to noises and outliers [33].…”
Section: Discussionmentioning
confidence: 99%
“…For example, unsupervised ML methods allow the inherent structure of unlabeled data to be discovered. Since the clustering method is applied to find homogeneous subgroups of observations, the algorithms have been used to profile phenotypes in sports science [3][4][5]. It is worth mentioning that the selection of the most appropriate clustering algorithm will depend on the distribution of the data and the phenotype/biological phenomenon to be analyzed (field knowledge) [6].…”
mentioning
confidence: 99%
“…After a possible transition into digital anthropometry, basic measures (stature, sitting height, and arm span), girths, breadths, and lengths can be evaluated with high accuracy and reliability using AI methods. Finally, unsupervised ML algorithms would benefit sports practitioners when the aim is to obtain anthropometric profiles, as has been demonstrated by our research group [3][4][5].…”
mentioning
confidence: 99%