In still image human action recognition, existing studies have mainly leveraged extra bounding box information along with class labels to mitigate the lack of temporal information in still images; however, preparing extra data with manual annotation is time-consuming and also prone to human errors. Moreover, the existing studies have not addressed action recognition with long-tailed distribution. In this paper, we propose a two-phase multi-expert classification method for human action recognition to cope with long-tailed distribution by means of super-class learning and without any extra information. To choose the best configuration for each super-class and characterize inter-class dependency between different action classes, we propose a novel Graph-Based Class Selection (GCS) algorithm. In the proposed approach, a coarse-grained phase selects the most relevant fine-grained experts. Then, the fine-grained experts encode the intricate details within each super-class so that the inter-class variation increases. Extensive experimental evaluations are conducted on various public human action recognition datasets, including Stanford40, Pascal VOC 2012 Action, BU101+, and IHAR datasets. The experimental results demonstrate