In ants, workers of different sizes may perform various tasks, even in so‐called monomorphic species with relatively low body size variation. However, it is unclear if the body size diversity of monomorphic workers correlates with task efficiency, especially in stressful contingencies. Here we tested if the body size variation of workers corresponds with its efficiency in transferring pupae. Transferring brood is a pre‐set behavioral response to stress, e.g. suboptimal temperature. Here we applied a laboratory experiment simulating nest damage. The study was performed on the common garden ant (Lasius niger (Linnaeus, 1758)) – a species with no distinct worker subcastes. The efficiency of workers was measured as the latency of transferring pupae from a lit part of the experimental colony to a darkened part, while the body size diversity was expressed as the within‐colony coefficient of variation in head width. We did not find any significant correlation between efficiency and body size variation. Summarizing the existing studies and the present results, we propose the hypothesis that the body size diversity of L. niger may have implications for workers’ division of labor but not for their task efficiency in a stressful contingency.