Surface coating modification on a polyethylene separator serves as a promising way to meet the high requirements of thermal dimensional stability and excellent electrolyte wettability for lithium ion batteries (LIBs). In this paper, we report a new type of surface modified separator by coating polyvinylidene fluoride (PVDF) organic particles on traditional microporous polyethylene (PE) separators. The PE separator coated by PVDF particles (PE-PVDF separator) has higher porosity (61.4%), better electrolyte wettability (the contact angle to water was 3.28° ± 0.21°) and superior ionic conductivity (1.53 mS/cm) compared with the bare PE separator (51.2%, 111.3° ± 0.12°, 0.55 mS/cm). On one hand, the PVDF organic polymer has excellent organic electrolyte compatibility. On the other hand, the PVDF particles contain sub-micro spheres, of which the separator can possess a large specific surface area to absorb additional electrolyte. As a result, LIBs assembled using the PE-PVDF separator showed better electrochemical performances. For example, the button cell using a PE-PVDF as the separator had a higher capacity retention rate (70.01% capacity retention after 200 cycles at 0.5 C) than the bare PE separator (62.5% capacity retention after 200 cycles at 0.5 C). Moreover, the rate capability of LIBs was greatly improved as well—especially at larger current densities such as 2 C and 5 C.