The life extension of ageing oil wells is becoming an ever more crucial part of an operator's activities in recent years, mainly due to slumping oil price which discourages new exploration and the potential extended operation of some older fields with sufficient producing capacity still remaining. The conductor forms one of the primary structural components of wells and its deterioration over time warrants immediate integrity assessment and rehabilitation plans. The construction residual loading or preloads on the conductor are calculated as per standard guidelines and by analytical means during its design and installation phase, but may not be realistic when assessing aged conductors, due to the high levels of over-conservatism built in to address the various uncertainties during the well drilling phase, hence a more practical means of evaluating this residual load is required in carrying out the integrity assessments. This papers presents the novel use of ultrasonic based non-destructive technique (NDT) to measure the conductor preload by observing the travel time of the longitudinal critical refracted (LCR) waves and employing the acoustoelastic method to determine the structural stresses. The measurement of the time of flight (TOF) of this wave component is evaluated from the signals measurement under a range of preload stresses induced into the specimen, and the acoustoelastic calibration curve is obtained as a result, for various section geometries and dimensions. Numerical analyses are also carried out to correlate and validate the magnitude order of the acoustoelastic constant of typical conductor steel grade (Grade-B). These are in good agreement with each other and can be a very reliable tool for the on-site preload measurements during oil well integrity assessment. This measurement of conductor preload results in minimising any associated uncertainties, assumptions and the corresponding over-conservatisms carried over from the design stage, hence streamlining the repair and rehabilitation strategies to the most critical well-conductor groups in the field, thus significantly reducing the costs and resources for operators in extending life of aged wells.