2022
DOI: 10.3934/math.2022485
|View full text |Cite
|
Sign up to set email alerts
|

Bond incident degree indices of stepwise irregular graphs

Abstract: <abstract><p>The bond incident degree (BID) index of a graph $ G $ is defined as $ BID_{f}(G) = \sum_{uv\in E(G)}f(d(u), d(v)) $, where $ d(u) $ is the degree of a vertex $ u $ and $ f $ is a non-negative real valued symmetric function of two variables. A graph is stepwise irregular if the degrees of any two of its adjacent vertices differ by exactly one. In this paper, we give a sharp upper bound on the maximum degree of stepwise irregular graphs of order $ n $ when $ n\equiv 2({\rm{mod}}\;4) $, a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 15 publications
0
0
0
Order By: Relevance