For the structural application of high-performance Steel Fiber Reinforced Expanded-shale Lightweight Concrete (SFRELC), a reliable bond of ribbed steel bar should be ensured. In this paper, an experimental study was carried out on the bond properties of ribbed steel bar embedded in SFRELC by the direct pull-out test. The SFRELC was produced with a strength grade of 35 MPa and a volume fraction of steel fiber as 0%, 0.8%, 1.2%, 1.6% and 2.0%, respectively. Fifteen groups of specimens were made with a central placed steel bar with diameter of 14 mm, 20 mm and 28 mm, respectively. Complete bond stress-slip curves were determined for each group of specimens, and the characteristic values of bond-stress and slip at key points of the curves were ascertained. Results show that the bond strength, peak-slip and residual bond strength increased with the increase of the volume fraction of steel fiber. With the increase of steel bar diameter, bond strength decreased while the peak-slip increased, and the descending curves became sharp with a decreased residual bond strength. Formulas for calculating the bond strength and peak-slip were proposed. The relationships were determined for the splitting bond strength, residual bond strength with the bond strength, the splitting bond slip and residual bond slip with the peak-slip. Combined with rational fitting analyses of bond strength and slip, a constitutive model was selected for predicting the bond stress-slip of ribbed steel bar in SFRELC.