The growing demand for engineered wood products in the construction sector has resulted in the diversification of the product offer. Used marginally in structural products in North America, northern hardwoods are now attracting a growing interest from industry and policy makers because of their outstanding strength as well as their high availability and distinctive appearance. Currently, there is no standard in Canada governing the use of hardwoods in the manufacturing of glued-laminated timber. As part of a larger project aiming to assemble the basic knowledge that would lead to such standard, the specific objective of this study was to assess the shear strength in dry and wet conditions of assemblies made from different hardwood species and structural adhesives. Results suggest that a mean shear strength as high as 20.5 MPa for white oak, 18.8 MPa for white ash and respectively 18.2 MPa and 17.4 MPa for yellow birch and paper birch can be obtained in dry conditions. The choice of adhesive did not affect the dry shear strength of our specimens, but differences were observed in wet conditions. Specimens bonded with melamine-formaldehyde adhesive had generally the highest wet shear strength and wood failure values. Our results also highlight the important influence of wood density on the percentage of failure that occurs in wood and, to a lesser extent, on shear strength. Further investigations on finger joint strength and full-size bending tests will allow confirming the potential for the investigated species to be used in glued-laminated timber.