Quaternary fossils from limestone caves bear various diagenetic features due to the complex nature of sedimentary processes. However, few studies have addressed the problem of diagenetic changes in fossils from tropical-wet environments. We study Quaternary fossil bones from different sites of a tropical limestone cave in northeastern Brazil. These fossils show diverse diagenetic features. The approach encompassed the use of scanning electron microscopy, Raman spectroscopy, and X-ray diffraction to understand the modification of the fossil bone structure, chemical composition, and mineral assemblage during the diagenesis processes. We describe a model for fossil diagenesis in tropical limestone caves that involves early and advanced diagenetic stages, which produce two routes with different endmembers. The diagenesis in the cave alters the crystallinity and ordering of hydroxyapatite. The recrystallization of hydroxyapatite appears to be strongly influenced by dripping water that is rich in calcium carbonate, which leads to crystal formation with higher crystallinity. In the absence of calcium carbonate, hydroxyapatite diagenesis involves crystal growth but not necessarily dissolution of the original material, which enables remarkable preservation of the biological structure.