Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The WCAY (weighted channel attention YOLO) model, which is meticulously crafted to identify fracture features across diverse X-ray image sites, is presented herein. This model integrates novel core operators and an innovative attention mechanism to enhance its efficacy. Initially, leveraging the benefits of dynamic snake convolution (DSConv), which is adept at capturing elongated tubular structural features, we introduce the DSC-C2f module to augment the model’s fracture detection performance by replacing a portion of C2f. Subsequently, we integrate the newly proposed weighted channel attention (WCA) mechanism into the architecture to bolster feature fusion and improve fracture detection across various sites. Comparative experiments were conducted, to evaluate the performances of several attention mechanisms. These enhancement strategies were validated through experimentation on public X-ray image datasets (FracAtlas and GRAZPEDWRI-DX). Multiple experimental comparisons substantiated the model’s efficacy, demonstrating its superior accuracy and real-time detection capabilities. According to the experimental findings, on the FracAtlas dataset, our WCAY model exhibits a notable 8.8% improvement in mean average precision (mAP) over the original model. On the GRAZPEDWRI-DX dataset, the mAP reaches 64.4%, with a detection accuracy of 93.9% for the “fracture” category alone. The proposed model represents a substantial improvement over the original algorithm compared to other state-of-the-art object detection models. The code is publicly available at https://github.com/cccp421/Fracture-Detection-WCAY . Supplementary Information The online version contains supplementary material available at 10.1038/s41598-024-77878-6.
The WCAY (weighted channel attention YOLO) model, which is meticulously crafted to identify fracture features across diverse X-ray image sites, is presented herein. This model integrates novel core operators and an innovative attention mechanism to enhance its efficacy. Initially, leveraging the benefits of dynamic snake convolution (DSConv), which is adept at capturing elongated tubular structural features, we introduce the DSC-C2f module to augment the model’s fracture detection performance by replacing a portion of C2f. Subsequently, we integrate the newly proposed weighted channel attention (WCA) mechanism into the architecture to bolster feature fusion and improve fracture detection across various sites. Comparative experiments were conducted, to evaluate the performances of several attention mechanisms. These enhancement strategies were validated through experimentation on public X-ray image datasets (FracAtlas and GRAZPEDWRI-DX). Multiple experimental comparisons substantiated the model’s efficacy, demonstrating its superior accuracy and real-time detection capabilities. According to the experimental findings, on the FracAtlas dataset, our WCAY model exhibits a notable 8.8% improvement in mean average precision (mAP) over the original model. On the GRAZPEDWRI-DX dataset, the mAP reaches 64.4%, with a detection accuracy of 93.9% for the “fracture” category alone. The proposed model represents a substantial improvement over the original algorithm compared to other state-of-the-art object detection models. The code is publicly available at https://github.com/cccp421/Fracture-Detection-WCAY . Supplementary Information The online version contains supplementary material available at 10.1038/s41598-024-77878-6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.