Mast cells adhere to fibroblasts, but the biological effects of adhesion are not well understood. We hypothesized that these adhesive interactions are important for tissue remodeling through the release of matrix metalloproteinases (MMP). Murine bone marrow cultured mast cells (BMCMC) were cocultured with NIH-3T3 fibroblasts or murine lung fibroblasts (CCL-206) and supernatants analyzed for MMP-9 release by gelatin zymography. Coculture of BMCMC for 24 h with NIH-3T3 or CCL-206 fibroblasts increased the release of MMP-9 from fibroblasts by 1.7 ± 0.2 and 2.0 ± 0.7-fold, respectively. Coculture of BMCMC and fibroblasts in the presence of IgE increased further MMP-9 release, which was released by fibroblasts. MMP-9 release was dependent on TNF released from IgE activated BMCMC and on adhesive interactions between BMCMC and fibroblasts. Increased MMP-9 release was also p44/42-dependent, as was MMP-9 up-regulation during coculture of fibroblasts with resting BMCMC. Finally, IgE injection into the mouse ear increased MMP-9 content of the ear tissue in the absence of Ag, indicating that IgE-mediated remodeling may play a pathogenic role in allergic conditions even in the absence of exposure to allergens. In conclusion, mast cell-fibroblast interactions induce the release of proteases important for tissue remodeling, such as MMP-9. MMP-9 release was further increased in the presence of IgE during coculture, suggesting a role for mast cell-fibroblast interactions in atopic conditions.