The importance of bone-morphogenetic proteins in prostate cancer is well recognized. Bone-morphogenetic protein-6 overexpression has been shown to increase the aggressiveness and invasiveness of prostate cancer cells. Recent studies on noggin and sclerostin, potent inhibitors of bone-morphogenetic protein signaling, have found that noggin also modifies the ability of prostate cancer cells to metastasize to bone. Taken together, these results suggest that bone-morphogenetic protein-6 signaling is important in prostate cancer progression. Our study investigated the expression of bone-morphogenetic protein-6, noggin and sclerostin in human prostate specimens (n ¼ 136) by immunohistochemical staining. We found that bone-morphogenetic protein-6 was increased (Po0.001), whereas sclerostin was decreased (P ¼ 0.004) in prostate cancer compared with nodular hyperplasia. In addition, significantly higher level of bone-morphogenetic protein-6 expression was observed in high-grade prostate cancer with Gleason score Z7 (P ¼ 0.027). Bone-morphogenetic protein-6, noggin and sclerostin alone could not predict the development of distant metastasis in our patient cohort. However, high level of bone-morphogenetic protein-6 and low level of noggin, or high level of bonemorphogenetic protein-6 and low level of both noggin and sclerostin expression in primary prostate cancer significantly predicted development of distant metastasis. The predictive value was still valid when only high-grade prostate cancers were included or when patients with secondary lesion other than bone were excluded. Taken together, these results suggest that a high level of bone-morphogenetic protein-6 signaling, resulting from increased expression of bone-morphogenetic protein-6 and decreased expression of its inhibitors, might promote the development of prostate cancer metastases. Our results also imply the potential use of bone-morphogenetic protein-6, noggin and sclerostin expression together as a prognostic predictor for metastatic progression of prostate cancer.