Among the metabolic changes occurring during the course of type 2 diabetes (T2DM) and diabetic kidney disease (DKD), impaired bone health with consequent increased fracture risk is one of the most complex and multifactorial complications. In subjects with diabetic kidney disease, skeletal abnormalities may develop as a consequence of both conditions. In the attempt to define a holistic approach to diabetes, potential effects of various classes of antidiabetic drugs on the skeleton should be considered in the setting of normal kidney function and in DKD. We reviewed the main evidence on these specific topics. Experimental studies reported potential beneficial and harmful effects on bone by different antidiabetics, with few data available in DKD. Clinical studies specifically designed to evaluate skeletal effects of antidiabetics have not been performed; notwithstanding, data gleaned from randomized controlled trials and intervention studies did not completely confirm observations made by basic research. In the aggregate, evidence from meta-analyses of these studies suggests potential positive effects on fracture risk by metformin and glucagon-like peptide-1 receptor agonists, neutral effects by dipeptidyl peptidase-4 inhibitors, sodium–glucose cotransporter-2 inhibitors, and sulfonylureas, and negative effects by insulin and thiazolidinediones. As no clinical recommendations on the management of antidiabetic drugs currently include fracture risk assessment among the main goal of therapy, we propose an integrated approach with the aim of defining a patient-centered management of diabetes in chronic kidney disease (CKD) and non-CKD patients. Future clinical evidence on the skeletal effects of antidiabetics will help in optimizing the approach to a personalized and more effective therapy of diabetes.