Bladder outlet obstruction (BOO) is a type of chronic disease that is mainly caused by benign prostatic hyperplasia. Previous studies discovered the involvements of both serum/glucocorticoid-regulated kinase 1 (SGK1) and activated T cell nuclear factor transcription factor 2 (NFAT2) in the proliferation of smooth muscle cells after BOO. However, the relationship between these two molecules is yet to be explored. Thus, this study explored the specific mechanism of the SGK1-NFAT2 signaling pathway in mouse BOO-mediated bladder smooth muscle cell proliferation in vivo and in vitro. In vivo experiments were performed by suturing 1/2 of the external urethra of female BALB/C mice to cause BOO for 2 weeks. In vitro, mouse bladder smooth muscle cells (MBSMCs) were treated with dexamethasone (Dex) or dexamethasone + SB705498 for 12 h and were transfected with SGK1 siRNA for 48 h. The expression and distribution of SGK1, transient receptor potential oxalate subtype 1 (TRPV1), NFAT2, and proliferating cell nuclear antigen (PCNA) were measured by Western blotting, polymerase chain reaction, and immunohistochemistry. The relationship between SGK1 and TRPV1 was analyzed by coimmunoprecipitation. The proliferation of MBSMCs was examined by 5-ethynyl-2 0 -deoxyuridine and cell counting kit 8 assays. Bladder weight, smooth muscle thickness, and collagen deposition in mice after 2 weeks of BOO were examined. Bladder weight, smooth muscle thickness, the