Boolean Matrix Factorization via Nonnegative Auxiliary Optimization
Duc P. Truong,
Erik Skau,
Derek Desantis
et al.
Abstract:A novel approach to Boolean matrix factorization (BMF) is presented. Instead of solving the BMF problem directly, this approach solves a nonnegative optimization problem with the constraint over an auxiliary matrix whose Boolean structure is identical to the initial Boolean data. Then the solution of the nonnegative auxiliary optimization problem is thresholded to provide a solution for the BMF problem. We provide the proofs for the equivalencies of the two solution spaces under the existence of an exact solut… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.