2022
DOI: 10.48550/arxiv.2211.02934
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Boost invariant spin hydrodynamics within the first order in derivative expansion

Abstract: Boost-invariant equations of spin hydrodynamics confined to the first-order terms in gradients are numerically solved. The spin equation of state, relating the spin density tensor to the spin chemical potential, is consistently included in the first order. Depending on its form and the structure of the spin transport coefficients, we find solutions which are both stable and unstable within the considered evolution times of 10 fm/c. These findings are complementary to the recent identification of stable and uns… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 50 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?