2024
DOI: 10.1007/s10462-024-10722-5
|View full text |Cite
|
Sign up to set email alerts
|

Boosting deep neural networks with geometrical prior knowledge: a survey

Matthias Rath,
Alexandru Paul Condurache

Abstract: Deep neural networks achieve state-of-the-art results in many different problem settings by exploiting vast amounts of training data. However, collecting, storing and—in the case of supervised learning—labelling the data is expensive and time-consuming. Additionally, assessing the networks’ generalization abilities or predicting how the inferred output changes under input transformations is complicated since the networks are usually treated as a black box. Both of these problems can be mitigated by incorporati… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 74 publications
0
0
0
Order By: Relevance