Isoreticular chemistry, which enables property optimization by changing compositions without changing topology, is a powerful synthetic strategy. One of the biggest challenges facing isoreticular chemistry is to extend it to ligands with strongly coordinating substituent groups such as unbound −COOH, because competitive interactions between such groups and metal ions can derail isoreticular chemistry. It is even more challenging to have an isoreticular series of carboxyl‐functionalized MOFs capable of encompassing chemically disparate metal ions. Here, with the simultaneous introduction of carboxyl functionalization and pore space partition, a family of carboxyl‐functionalized materials is developed in diverse compositions from homometallic Cr3+ and Ni2+ to heterometallic Co2+/V3+, Ni2+/V3+, Co2+/In3+, Co2+/Ni2+. Cr‐MOFs remain highly crystalline in boiling water. Unprecedentedly, one Cr‐MOF can withstand the treatment cycle with 10m NaOH and 12m HCl, allowing reversible inter‐conversion between unbound −COOH acid form and −COO− base form. These materials exhibit excellent sorption properties such as high uptake capacity for CO2 (100.2 cm3 g−1) and hydrocarbon gases (e.g., 142.1 cm3 g−1 for C2H2, 110.5 cm3 g−1 for C2H4) at 1 bar and 298K, high benzene/cyclohexane selectivity (up to ≈40), and promising separation performance for gas mixtures such as C2H2/CO2 and C2H2/C2H4.