2019
DOI: 10.1007/978-3-030-30487-4_43
|View full text |Cite
|
Sign up to set email alerts
|

Boosting Reinforcement Learning with Unsupervised Feature Extraction

Abstract: This work addresses the challenge of navigating expansive spaces with sparse rewards through Reinforcement Learning (RL). Using topological maps, we elevate elementary actions to object-oriented macro actions, enabling a simple Deep Q-Network (DQN) agent to solve otherwise practically impossible environments.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 26 publications
0
0
0
Order By: Relevance