2023
DOI: 10.1080/21681163.2022.2157747
|View full text |Cite
|
Sign up to set email alerts
|

Boosting research on dental panoramic radiographs: a challenging data set, baselines, and a task central online platform for benchmark

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(6 citation statements)
references
References 41 publications
0
4
0
2
Order By: Relevance
“…OdontoAI : The OdontoAI platform provides a public dataset with 4,000 PRs, of which 2,000 are annotated [ 19 ]. The annotations include tooth segmentations with corresponding FDI numbers.…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…OdontoAI : The OdontoAI platform provides a public dataset with 4,000 PRs, of which 2,000 are annotated [ 19 ]. The annotations include tooth segmentations with corresponding FDI numbers.…”
Section: Methodsmentioning
confidence: 99%
“…Therefore, the current study combined two public datasets (OdontoAI [ 19 ], DENTEX [ 21 ]) to develop an automated method for the novel task of concurrent tooth segmentation, FDI labeling, and diagnosis classification, including caries, impacted tooth, and periapical lesions. This study aimed to evaluate the advantages and challenges of using publicly available datasets in dental AI research, focusing on improving the diagnostic accuracy of caries, impacted teeth, and periapical lesions in PRs.…”
Section: Introductionmentioning
confidence: 99%
“…Da bi se nadomestio nedostatak podataka, koristiće se vrednosti težinskih koeficijenata modela neuronske mreže koji je obučavan na MSCOCO skupu za obuku. Pored opisanog eksperimenta koji je podrazumevao optimizaciju parametara modifikovane mreže na inicijalnom skupu podataka od 20 slika, u radu su razmatrane još tri eksperimentalne postavke korišćenjem OdontoAI baze slika predložene u [4]. Tako su analizirane performanse modela doobučavanih na skupovima podataka preuzetim iz OdontoAI baze snimaka, tj.…”
Section: Opis Eksperimentalne Postavkeunclassified
“…Zahvaljujemo se doktoru Bojanu Petroviću, redovnom profesoru Medicinskog fakulteta Univerziteta u Novom Sadu, i Klinici za stomatologiju Vojvodine, koji su kroz konsultacije i pripremu panoramskih radiografskih snimaka podržali istraživanje opisano u radu. Takođe se zahvaljujemo i kolegama sa Federalnog univerziteta u Bahiji, u Brazilu, koji su ljubazno ustupili bazu slika [4] za potrebe ovog istraživanja.…”
Section: Zahvalnicaunclassified
“…And the annotation needs to consume a lot of time of dental experts, but also highly dependent on the cognition and experience of dental experts, which is undoubtedly unfriendly to deep learning networks that need a large amount of data for training. It is fortunate that some medical scholars have made efforts for this purpose and provided some public DPR datasets 3,[28][29][30] and 3D dental datasets 4 for related research. However, due to the varying parameters of different imaging devices, the same deep learning model may produce large performance differences in different datasets.…”
Section: Introductionmentioning
confidence: 99%