Boosting the Sodium-Ion Transport and Surface Pseudocapacitance of a SnO2 Nanoflower at a High Mass Loading Level for High Areal Capacity and Fast Sodium-Ion Storage
Kai X. Guo,
Yao H. Zhang,
Qin Wang
et al.
Abstract:The exploitation of electrode materials with high areal capacity and rate performance under high mass loading is critical for the practical application of sodium-ion batteries (SIBs), and 3D nanocomposite electrode materials based on nanoelectrode materials and 3D carbon-based material frameworks have shown extraordinary promise. However, the areal capacity and rate performance are unsatisfactory because of the low utilization efficiency and sluggish Na + kinetics of active Na + storage materials. To address t… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.