2023
DOI: 10.1515/mcma-2023-2010
|View full text |Cite
|
Sign up to set email alerts
|

Bootstrap choice of non-nested autoregressive model with non-normal innovations

Abstract: It is known that the block-based version of the bootstrap method can be used for distributional parameter estimation of dependent data. One of the advantages of this method is that it improves mean square errors. The paper makes two contributions. First, we consider the moving blocking bootstrap method for estimation of parameters of the autoregressive model. For each block, the parameters are estimated based on the modified maximum likelihood method. Second, we provide a method for model selection, Vuong’s te… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?