Processing seismic data from drillbit-generated vibrations requires a reliable source signature for correlation and deconvolution purposes. Recently, a land field trial has been conducted in a desert environment. A memory-based downhole vibration accelerometer has been used together with a more conventional top-drive sensor to continuously record the pilot signal from 590 to 8600 ft (180–2621 m). Past results indicate that seismic-while-drilling (SWD) data processed using the top-drive accelerometer exhibit good quality in the middle sections of the well but a reduced signal-to-noise ratio for shallow and deep sections. One of the main challenges in using the downhole pilot is a substantial drift of the downhole clock time. To resolve it, a novel automated time-alignment procedure using the GPS-synchronized signal of the top-drive sensor as a reference is applied. The downhole recording provides a source signature of better quality. In shallow sections of the well, it helps to overcome the intense surface-related vibrational noise, whereas, in deeper sections, it provides a cleaner extraction of weaker signals from the polycrystalline diamond compact bits. Processing with the downhole pilot results in better surface seismic data quality than with a conventional top-drive sensor. Therefore, enabling the use of the synchronized downhole pilot signal is of crucial importance for SWD applications. Modern cost-effective near-bit vibrational sensors widely used for different nonseismic applications could be an effective acquisition solution, as shown in this study.