Borophenes (2D boron sheets) have triggered a surge of interest both theoretically and experimentally because of its distinct structural, optical and electronic properties for extensive potential applications. Although theoretical efforts have guided the research directions of borophene, only few synthetic borophene sheets have been demonstrated experimentally. Borophene sheets have been successfully synthesized experimentally on metal substrates until 2015. Afterwards, more efforts were put on the controlled synthesis of crystalline and semiconducting borophene sheets as well as on the investigation of their novel and fascinating physical properties. This report provides a brief review on theoretical and experimental progress in borophene research. Some typical structures and properties of borophenes have been reviewed. The focus is laid on summarizing the experimental synthesis of borophene in recent years, and on showing some ultrastable and semiconducting borophenes which have been applied in electronic information devices. Finally, the future challenges and opportunities regarding experimental realization and practical applications of borophenes are presented.