We present synthesis, crystal structure, hardness, and IR/Raman and UV/Vis spectra of a new compound with the mean composition LiB(12)PC. Transparent single crystals were synthesised from Ga, Li, B, red phosphorus and C at 1500 °C in boron nitride crucibles welded in Ta ampoules. Depending on the type of boron used for the synthesis we obtained colourless, brown and red single crystals with slightly different P/C ratios. Colourless LiB(12)PC crystallizes orthorhombic in the space group Imma (No. 74) with a=10.188(2) Å, b=5.7689(11) Å, c=8.127(2) Å and Z=4. Brown LiB(12)P(0.89)C(1.11) is very similar, but with a lower P content. Red single crystals of LiB(12)P(1.13)C(0.87) have a larger unit cell with a=10.4097(18) Å, b=5.9029(7) Å, c=8.2044(12) Å. EDX measurements confirm that the red crystals contain more phosphorus than the other ones. The crystal structure is characterized by a covalent network of B(12) icosahedra connected by exohedral B-B bonds and P-P, P-C or C-C units. Li atoms are located in interstitials. The structure is closely related to MgB(7), LiB(13)C(2) and ScB(13)C. LiB(12)PC fulfils the electron counting rules of Wade and also Longuet-Higgins. Measurements of Vickers micro-hardness (H(V)=27 GPa) revealed that LiB(12)PC is a hard material. The optical band gaps obtained from UV/Vis spectra match the colours of the crystals. Furthermore we report on the IR and Raman spectra.