We revised the large-N expansion for a three-dimensional Bose system with short-range repulsion in normal phase. Particularly, for the model potential that is characterised only by the s-wave scattering length a the full numerical calculations of the critical temperature in the 1/N -approximation as a function of the gas parameter an 1/3 are performed. Additionally to the well-known result in the dilute limit we estimated analytically the leading-order strong-coupling behavior of the Bose-Einstein condensation transition temperature. It is shown that the critical temperature shift of the non-ideal Bose gas grows at small an 1/3 , reaches some maximal value and then falls down becoming negative.