Molecular para-hydrogen (p-H 2 ) has been proposed theoretically as a possible candidate for superfluidity, but the eventual superfluid transition is hindered by its crystallization. In this work, we study a metastable noncrystalline phase of bulk p-H 2 by means of the path integral Monte Carlo method in order to investigate at which temperature this system can support superfluidity. By choosing accurately the initial configuration and using a noncommensurate simulation box, we have been able to frustrate the formation of the crystal in the simulated system and to calculate the temperature dependence of the one-body density matrix and of the superfluid fraction. We observe a transition to a superfluid phase at temperatures around 1 K. The limit of zero temperature is also studied using the diffusion Monte Carlo method. Results for the energy, condensate fraction, and structure of the metastable liquid phase at T = 0 are reported and compared with the ones obtained for the stable solid phase.