In 2015, more than 800 papers were published in the field of pulmonary hypertension. A Clinical Year in Review article cannot possibly incorporate all this work and needs to be selective. The recently published European guidelines for the diagnosis and treatment of pulmonary hypertension contain an inclusive summary of all published clinical studies conducted until very recently. Here, we provide an overview of papers published after the finalisation of the guideline. In addition, we summarise recent advances in pulmonary vasculature science. The selection we made from the enormous amount of published work undoubtedly reflects our personal views and may not include all papers with a significant impact in the near or more distant future. The focus of this paper is on the diagnosis of pulmonary arterial hypertension, understanding the success of combination therapy on the right ventricle and scientific breakthroughs.
@ERSpublicationsThe review summarises advances in pulmonary hypertension since the publication of the recent ESC/ERS guidelines http://ow.ly/WUwoeThe global picture of pulmonary arterial hypertension Table 1 summarises the recent classification of pulmonary hypertension [1,2]. Based on data from the large European and North American registries, the most common types of pulmonary arterial hypertension (PAH) are idiopathic PAH and PAH associated with connective tissue disease. Less is known of the epidemiology of PAH in other parts of the world. Using the data from a large reference centre in Brazil, ALVES et al. [3] showed that schistosomiasis is among the top three of causes of PAH in that country. These global epidemiological data emphasise the importance of accounting for such differences in future clinical trials.
Pulmonary veno-occlusive diseaseAn important change from the previous classification is that significant progress has been made in the field of pulmonary veno-occlusive disease (PVOD). Several causes of PVOD have been identified in recent years, including genetics, drugs and radiation therapy. The finding of the EIF2AK4 (eukaryotic translation initiation factor 2α kinase 4) mutation in familial PVOD and pulmonary capillary haemangiomatosis (PCH) might boost further research [4,5]. By the discovery of this gene, it is possible to confirm the diagnosis of PVOD or PCH by demonstrating the presence of the mutation instead of a histological diagnosis [5]. Of interest is the recent study by PERROS et al. [6] showing not only that mitomycin is a risk factor for the development of PVOD, but also that mitomycin induces pulmonary vascular disease in rats that resembles the pathological features of PVOD. This finding not only offers a representative animal model to study the disease but also sheds new light on the possible role of alkylating chemotherapy on the development of pulmonary hypertension [7]. New associations between drugs and disease were not only made in PVOD; in PAH, a possible relationship between a drug and the disease also was found. A recent