Gene regulatory factors encoded by the nuclear genome are essential for mitochondrial biogenesis and function. Some of these factors act exclusively within the mitochondria to regulate the control of mitochondrial transcription, translation and other functions. Others govern the expression of nuclear genes required for mitochondrial metabolism and organelle biogenesis. The peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family of transcriptional coactivators plays a major role in transducing and integrating physiological signals governing metabolism, differentiation and cell growth to the transcriptional machinery controlling mitochondrial functional capacity. Thus, the PGC-1 coactivators serve as a central component of the transcriptional regulatory circuitry that coordinately controls the energy-generating functions of mitochondria in accordance with the metabolic demands imposed by changing physiological conditions, senescence, and disease.
KeywordsMitochondria; Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1); Peroxisome proliferator-activated receptor (PPAR); transcription; gene regulation; metabolism
Regulation of mitochondrial biogenesisA set of nuclear-encoded factors coordinately regulate mitochondrial mass and function in response to a host of energy and growth demands, including cellular metabolic stress, such as the constant production of reactive oxygen species (ROS). Dysregulation of mitochondrial function has broad implications for human disease including diabetes, heart failure and neurodegeneration. Thus, there is a high level of interest in developing therapeutic strategies aimed at modulating the regulatory pathways that control mitochondrial function and biogenesis. The nuclear-encoded transcription factors and coactivators that govern mitochondrial function serve as one major focus. Here we review recent advances in our understanding of this regulatory circuitry and its potential role in integrating mitochondrial biogenesis with cellular stress responses. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. The transcription and translation of the mitochondrial genome is dependent upon a host of nuclear-encoded gene products (Figure 1; Box 1). Mitochondrial DNA (mtDNA) transcription requires a single RNA polymerase (POLRMT, see glossary) that shares sequence similarity with yeast mitochondrial and T3/T7 bacteriophage polymerases, two stimulatory transcription factors (Tfam, TFB2M) and a termination factor (MTERF1) [1,2]. Transcription occurs bi-directionally from divergent promoters termed LSP and HSP wi...