The usual approaches to describing and understanding ecological processes in a landscape use patch-mosaic models based on traditional landscape metrics. However, they do not consider that many of these processes cannot be observed without considering the multiple interactions between different land-use patches in the landscape. The objective of this research was to provide a synthetic overview of graph metrics that characterize landscapes based on patch-mosaic models and to analyze the ecological meaning of the metrics to propose a relevant selection explaining biodiversity patterns and ecological processes. First, we conducted a literature review of graph metrics applied in ecology. Second, a case study was used to explore the behavior of a group of selected graph metrics in actual differentiated landscapes located in a long-term socioecological research site in Brittany, France. Thirteen landscape-scale metrics and 10 local-scale metrics with ecological significance were analyzed. Metrics were grouped for landscape-scale and local-scale analysis. Many of the metrics were able to identify differences between the landscapes studied. Lastly, we discuss how graph metrics offer a new perspective for landscape analysis, describe the main characteristics related to their calculation and the type of information provided, and discuss their potential applications in different ecological contexts.