We study the quantum Hamilton-Jacobi (QHJ) equation of the recently obtained exactly solvable models, related to the newly discovered exceptional polynomials and show that the QHJ formalism reproduces the exact eigenvalues and the eigenfunctions. The fact that the eigenfunctions have zeros and poles in complex locations leads to an unconventional singularity structure of the quantum momentum function p(x), the logarithmic derivative of the wave function, which forms the crux of the QHJ approach to quantization. A comparison of the singularity structure for these systems with the known exactly solvable and quasi-exactly solvable models reveals interesting differences. We find that the singularity structure of the momentum function for these new potentials lies between the above two distinct models, sharing similarities with both of them. This prompted us to examine the exactness of the supersymmetric WKB (SWKB) quantization condition. The interesting singularity structure of p(x) and of the superpotential for these models has important consequences for the SWKB rule and in our proof of its exactness for these quantal systems.