The effects of boundary and local thermal non-equilibrium on the criterion for the onset of convection in a sparsely packed horizontal anisotropic porous layer are investigated. A two-field temperature model each representing the solid and fluid phases separately is used and the flow in the porous medium is described by the Brinkman extended-Darcy model. The lower boundary is rigid, while the upper boundary is considered to be either rigid or free with fixed temperature conditions at the boundaries. The stability equations are solved numerically using the Galerkin method to extract the critical stability parameters. The influence of local thermal non-equilibrium, mechanical and thermal anisotropy parameters representing the fluid and solid phases is assessed on the stability characteristics of the system. The existing results are obtained as limiting cases from the present study.