This paper is concerned with the Proportional Integral (PI) regulation control of the left Neumann trace of a one-dimensional semilinear wave equation. The control input is selected as the right Neumann trace. The control design goes as follows. First, a preliminary (classical) velocity feedback is applied in order to shift all but a finite number of the eivenvalues of the underlying unbounded operator into the open left half-plane. We then leverage on the projection of the system trajectories into an adequate Riesz basis to obtain a truncated model of the system capturing the remaining unstable modes. Local stability of the resulting closed-loop infinite-dimensional system composed of the semilinear wave equation, the preliminary velocity feedback, and the PI controller, is obtained through the study of an adequate Lyapunov function. Finally, an estimate assessing the set point tracking performance of the left Neumann trace is derived.