This article explores the influence of blending polyol ester–based bio-lubricant with commercial lubricant on engine performance. Polyol esters trimethylolpropane ester and pentaerythritol ester were prepared from Calophyllum inophyllum seeds. Extreme care was taken to minimize deterioration of physicochemical properties when blending bio-lubricant with commercial oil. Blending of bio-lubricant with commercial oil was carried out in 10%, 15%, 20% and 25% volume. The test oils were first investigated for wear and friction properties on a four-ball wear tester. Optimum blending ratio was calculated from results of tribological properties, and the blend with optimum blend ratio was investigated for engine performance. The engine performance of the optimum blends was evaluated by conducting a 60-h endurance test on a motorbike. Significant improvement in tribological properties was observed up to a blending percentage of 15% when blending pentaerythritol ester with commercial oil. In the case of trimethylolpropane ester–based bio-lubricant, 10% blending with commercial oil gave optimum performance. The novel evaluation of engine performance of commercial oil and blends has shown a reduction in the wear of engine components with an encouraging decrease in fuel consumption. Metallographic studies conducted on worn piston rings reveal synergy between additives in the commercial oil and esters in the bio-lubricant in reducing wear and friction, thereby reducing fuel consumption.