Abstract:The classical Gauss-Lucas theorem describes the location of the critical points of a polynomial. There is also a hyperbolic version, due to Walsh, in which the role of polynomials is played by finite Blaschke products on the unit disk. We consider similar phenomena for generic inner functions, as well as for certain "locally inner" self-maps of the disk. More precisely, we look at a unit-norm function f ∈ H ∞ that has an angular derivative on a set of positive measure (on the boundary) and we assume that its i… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.