Single-particle combustion of coal char is analyzed using a generalized shrinking core model. Finite volume method, which was earlier employed by the authors in solving moving boundary problems involving fluid-solid noncatalytic reactions in general, is used to solve fully transient mass and energy equations. The model takes into account convection and diffusion inside the particle as well as in the boundary layer. The computed results are compared with the experimental data of the authors for combustion of coal char in a fluidized bed combustor. The effects of parameters such as bulk temperature and initial particle radius on the combustion dynamics are examined. The phenomena of ignition and extinction are also investigated. Finally, the importance of Stefan flow, originating due to nonequimolar counterdiffusion, on combustion of coal char is analyzed. C 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 569-582, 2008