Ice accretion on lifting surfaces induces an aerodynamic penalty in lift and drag on an aircraft. This performance degradation depends on the geometric features, type, and surface characteristics of the accreted ice on the airfoil. In the present work, we propose a set of two-parameter, low-order models to represent some of the typical ice topologies: glaze, rime, and horn. The parametric space is swept for all types of ice to isolate the aerodynamic changes causing performance degradation on a canonical symmetrical airfoil, which is the representative airfoil used by the National Research Council of Canada's platform for ice accretion and coatings tests with ultrasonic readings platform for in-flight icing tests. The three ice topologies show a self-similar trend between the stall angle of attack and the ice thickness, with the horn-type of ice imparting the greatest drag and lift penalty due to strong boundary layer separation. The relative effect of ice roughness plays a secondary role in performance degradation, and in some cases, the roughness causes a thicker and more resilient boundary layer, which can, under very specific icing conditions, enhance the aerodynamic performance.