“…3 (1, qs) d q s ≈ 0.13008493,L 4 = 1 1/4 G 4 (1, qs) d q s ≈ 0.02446965, M 1 ≈ 0.26216363, M 2 ≈ 0.02789647, M 1 ≈ 0.00332425, M 2 ≈ 0.00013782. We choose r 1 = 1 1000 , r 2 = 10, σ 1 = 3 < 1 M 1 ≈ 3.8144, σ 2 = 35 < 1 M 2 ≈ 35.8468, σ 3 = 301 > 1 M 1 ≈ 300.8201, and σ 4 = 7256 > 1 t+4 = 0.75 ≥ σ 3 r 1 2 = 0.1505, ∀ t ∈ 1 4 , 1 , u, v ≥ 0, u + v ≤ 1 1000 , x ∈ 0, (37/6) , g(t, u, v, x, y) ≥ e −1/1000 + min t∈[1/4,1] 9(t+1) t 3 +2 ≈ 6.5804 ≥ σ 4 r 1 2 ≈ 3.628, ∀ t ∈ 1 4 , 1 , u, v ≥ 0, u + v ≤ 1 1000 , x ∈ 0, t+4 ≈ 5.3502 ≤ σ 1 r 2 2 = 15, ∀ t ∈ [0, 1], u, v ≥ 0, u + v ≤ 10, x ∈ 0, 10 Γ 1/2 (51/5) , y ∈ 0, 10 Γ 1/2 (37/6) , g(t, u, v, x, y) ≤ 1 + +2 ≈ 15.5719 ≤ σ 2 r 2 2 = 175, ∀ t ∈ [0, 1], u, v ≥ 0, u + v ≤ 10, x ∈ 0, is verified.By Theorem 1, we deduce that problem (81),(82) with the functions in (86) has at least one positive solution (u(t), v(t)), t ∈ [0, 1], such that 1 1000 ≤ ∥u∥ + ∥v∥ ≤ 10, andmin t∈[1/4,1] u(t) ≥ 1 + x 1/3 + 1 6 e −y , ∀ t ∈ [0, 1], u, v ≥ 0, u + v ≤ 1, + 1 6 e −y , ∀ t ∈ [0, 1], u, v ≥ 0, 1 < u + v ≤ 4, + 1 6 e −y , ∀ t ∈ [0, 1], u, v ≥ 0, u + v > 4, g(t, u, v, x, y) = +1 + y 1/4 , ∀ t ∈ [0, 1], u, v ≥ 0, u + v ≤ 1, +1 + y 1/4 , ∀ t ∈ [0, 1], u, v ≥ 0, 1 < u + v ≤ 4, +1 + y 1/4 , ∀ t ∈ [0, 1], u, v ≥ 0, u + v > 4.…”