2011
DOI: 10.1007/s11072-011-0131-7
|View full text |Cite
|
Sign up to set email alerts
|

Boundary-value problems for linear equations with a generalized invertible operator in a Banach space with basis

Abstract: We consider linear boundary-value problems for operator equations with generalized invertible operators in Banach spaces that have bases. Using the technique of generalized inverse operators applied to generalized invertible operators in Banach spaces, we establish conditions for the solvability of linear boundary-value problems for these operator equations and obtain formulas for the representation of their solutions. We consider special cases of these boundary-value problems, namely, so-called n-and d -norma… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 5 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?