1996
DOI: 10.1007/bf02529500
|View full text |Cite
|
Sign up to set email alerts
|

Boundary-Value problems for systems of integro-differential equations with Degenerate Kernel

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
19
0
1

Year Published

2012
2012
2019
2019

Publication Types

Select...
7

Relationship

2
5

Authors

Journals

citations
Cited by 36 publications
(20 citation statements)
references
References 0 publications
0
19
0
1
Order By: Relevance
“…By using the theory of pseudoinverse Moore-Penrose matrices [1][2][3], we investigate the conditions of solvability and propose an iterative algorithm for the construction of solutions of weakly nonlinear systems of integrodifferential equations with small parameter " …”
Section: Statement Of the Problem And Auxiliary Resultsmentioning
confidence: 99%
“…By using the theory of pseudoinverse Moore-Penrose matrices [1][2][3], we investigate the conditions of solvability and propose an iterative algorithm for the construction of solutions of weakly nonlinear systems of integrodifferential equations with small parameter " …”
Section: Statement Of the Problem And Auxiliary Resultsmentioning
confidence: 99%
“…In S.G. Krein's terminology [18, p. 8], such problems are everywhere solvable. However, there exist boundary value problems for which the original operator equation is not everywhere solvable, for example, problems for integro-differential equations [19] and problems for singular differential systems [20][21][22]. In this connection, it is topical to study general boundary value problems for operator equations in a Banach space that are not everywhere solvable, and this is what we deal with in the present paper.…”
Section: Doi: 101134/s0012266114030057mentioning
confidence: 99%
“…where c is an arbitrary element of the space c and (20), we obtain the general solution of the boundary value problem (17), (18) Therefore, the boundary value problem (17), (18) is solvable if and only if conditions (19) and (23) are satisfied, and, in this case, it has the family of solutions…”
Section: )mentioning
confidence: 99%
“…8], такие задачи являются везде разрешимыми. Однако существуют краевые задачи, у кото-рых исходное операторное уравнение не является везде разрешимым, например, задачи для интегро-дифференциальных уравнений [19], задачи для сингулярных дифференциальных сис-тем [20][21][22]. В связи с этим актуальной остается задача рассмотрения общих краевых задач для не везде разрешимых операторных уравнений в банаховых пространствах, чему и посвящена настоящая работа.…”
unclassified