This paper proposes the electric vehicle (EV)-station-grid coordination optimization strategy considering user preferences, which regulates the charging behaviors of EV users from the user side to ensure the stable and safe operation of the power grid. Firstly, the spatio-temporal prediction model of charging load based on speed-temperature is developed. The model of EV power consumption per unit mileage affected by temperature and EV speed is constructed, and the shortest path algorithm is applied to determine the driving paths of EVs so as to judge the charging demand in combination with the state of charge (SOC) of the battery and to determine the charging periods and locations of the EVs, thus obtaining the spatio-temporal information of the charging load. Secondly, a multi-attribute charging decision model considering user preferences is constructed. Fuzzy clustering and rough set theory are applied to mine user behavior preferences, combined with behavioral economics to describe users’ irrational charging decision-making psychology. Lastly, a real-time charging price model considering voltage fluctuation index and user charging cost is constructed to analyze the impact of price on guiding charging behaviors. The simulation results verify the effectiveness and performance of the collaborative optimization strategy.