In this paper we investigate the following chemotaxis system with signal‐dependent motility and indirect signal absorption
leftutgoodbreak=normalΔ(γfalse(vfalse)u)goodbreak+μu(1−u),leftx∈normalΩ,tgoodbreak>0,leftvtgoodbreak=normalΔvgoodbreak−vw,leftx∈normalΩ,tgoodbreak>0,leftwtgoodbreak=−δwgoodbreak+u,leftx∈normalΩ,t>0$$\begin{equation} {\left\lbrace \def\eqcellsep{&}\begin{array}{lll}u_t=\Delta (\gamma (v)u)+\mu u(1-u), &x\in \Omega , t>0, \\[3pt] v_t=\Delta v-vw, & x\in \Omega , t>0, \\[3pt] w_t=-\delta w+u, & x\in \Omega , t>0 \end{array} \right.} \end{equation}$$in a bounded domain with smooth boundary. We present the global existence of classical solutions to the model (*) in two space dimensions with logistic source and in any dimension for small initial data without logistic source. In addition, the asymptotic behavior of the solutions is studied.