“…χ)M(χ, k − 1)| 2 (1−k)/2 * χ,q |M(χ, k)| 2/k |M(χ, k − 1)| 2 k/2 . (6.2)As in the proof of[8, Lemma 3.1], we note for |z| ≤ aK/10 with 0 < a ≤ 1,We apply (6.3) with z = kP ′ i (χ), K = e 2 kα −3/4 i and a = k to see that when|P ′ i (χ)| ≤ ⌈e 2 kα −3/4 i ⌉/10, M i (χ, k) = exp(kP ′ i (χ))(1 + O exp(k|P ′ i (χ)|) kP ′ i (χ)) 1 + O ke −e 2 kα −3/4 i Similarly, we have M i (χ, k − 1) = exp ((k − 1)P ′ i (χ)) 1 + O e −e 2 kα −3/4 iThe above estimations then yield that if|P ′ i (χ)| ≤ ⌈e 2 kα −3/4 i ⌉/10, then |M i (χ, k) M i (χ, k − 1)| 2 = exp(2kℜP ′ i (χ)) 1 + O e −e 2 kα −3/=|M j (χ, k)| 2 1 + O e −e 2 kα −3/4 iOn the other hand, we notice that when|P ′ i (χ) ≥ ⌈e 2 kα −3/4 i ⌉/10, |M i (χ, k)| ≤ ⌈e 2 kα −3/4 i ⌉ r=0 |P ′ i (χ)| r r! ≤ |P ′ i (χ)| ⌈e 2 kα −3/4Observe that the same bound above also holds for |M i (χ, k − 1)|.…”