2006
DOI: 10.1017/s0021900200002163
|View full text |Cite
|
Sign up to set email alerts
|

Bounds for perpetual American option prices in a jump diffusion model

Abstract: We provide bounds for perpetual American option prices in a jump diffusion model in terms ofAmerican option prices in the standard Black-Scholes model. We also investigate the dependence of the bounds on different parameters of the model.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0
1

Year Published

2007
2007
2011
2011

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 8 publications
0
1
0
1
Order By: Relevance
“…For the case of American options, the results are much more limited. We can mention only the papers Bellamy and Jeanblanc-Picqué (2000) and Ekström (2006), which considered 410 R. V. IVANOV a jump-diffusion model with Poisson jump measure and obtained the bounds based on the American Black-Scholes pricing function for American options in finite time and for perpetual American options respectively. This paper deals with American options.…”
Section: Introductionmentioning
confidence: 99%
“…For the case of American options, the results are much more limited. We can mention only the papers Bellamy and Jeanblanc-Picqué (2000) and Ekström (2006), which considered 410 R. V. IVANOV a jump-diffusion model with Poisson jump measure and obtained the bounds based on the American Black-Scholes pricing function for American options in finite time and for perpetual American options respectively. This paper deals with American options.…”
Section: Introductionmentioning
confidence: 99%
“…Из работ, в которых задачи об оптимальной остановке решаются для различных функционалов геометрического броуновского движения, отметим [2]- [9]. Диффузионные процессы обсуждаются в [10], [11]. Экспоненци-альные процессы Леви рассматриваются в [12].…”
unclassified