This paper deals with asymptotic behavior for blow‐up solutions to time‐weighted reaction–diffusion equations ut=Δu+eαtvp and vt=Δv+eβtuq, subject to homogeneous Dirichlet boundary. The time‐weighted blow‐up rates are defined and obtained by ways of the scaling or auxiliary‐function methods for all α,
β∈double-struckR. Aiding by key inequalities between components of solutions, we give lower pointwise blow‐up profiles for single‐point blow‐up solutions. We also study the solutions of the system with variable exponents instead of constant ones, where blow‐up rates and new blow‐up versus global existence criteria are obtained. Time‐weighted functions influence critical Fujita exponent, critical Fujita coefficient and formulae of blow‐up rates, but they do not limit the order of time‐weighted blow‐up rates and pointwise profile near blow‐up time. Copyright © 2017 John Wiley & Sons, Ltd.