Let [Formula: see text] be a commutative ring and [Formula: see text] the multiplicative group of unit elements of [Formula: see text]. In 2012, Khashyarmanesh et al. defined the generalized unit and unitary Cayley graph, [Formula: see text], corresponding to a multiplicative subgroup [Formula: see text] of [Formula: see text] and a nonempty subset [Formula: see text] of [Formula: see text] with [Formula: see text], as the graph with vertex set [Formula: see text]and two distinct vertices [Formula: see text] and [Formula: see text] being adjacent if and only if there exists [Formula: see text] such that [Formula: see text]. In this paper, we characterize all Artinian rings [Formula: see text] for which [Formula: see text] is projective. This leads us to determine all Artinian rings whose unit graphs, unitary Cayley graphs and co-maximal graphs are projective. In addition, we prove that for an Artinian ring [Formula: see text] for which [Formula: see text] has finite nonorientable genus, [Formula: see text] must be a finite ring. Finally, it is proved that for a given positive integer [Formula: see text], the number of finite rings [Formula: see text] for which [Formula: see text] has nonorientable genus [Formula: see text] is finite.