2015
DOI: 10.1016/j.exmath.2014.07.001
|View full text |Cite
|
Sign up to set email alerts
|

Bounds for Turánians of modified Bessel functions

Abstract: Abstract. Motivated by some applications in applied mathematics, biology, chemistry, physics and engineering sciences, new tight Turán type inequalities for modified Bessel functions of the first and second kind are deduced. These inequalities provide sharp lower and upper bounds for the Turánian of modified Bessel functions of the first and second kind, and in most cases the relative errors of the bounds tend to zero as the argument tends to infinity. The chief tools in our proofs are some ideas of Gronwall [… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
42
0
1

Year Published

2016
2016
2021
2021

Publication Types

Select...
8

Relationship

2
6

Authors

Journals

citations
Cited by 36 publications
(43 citation statements)
references
References 54 publications
0
42
0
1
Order By: Relevance
“…Table 3: Relative error in approximatingt µ,ν (x)/t µ−1,ν−1 (x) by the lower bound of (3.38). 0.0101 0.0313 0.0593 0.0285 0.0122 0.0067 0.0031 0.0011 0.0003 (2,2.5) 0.0015 0.0054 0.0200 0.0244 0.0144 0.0093 0.0049 0.0020 0.0006 (4.5,5) 0.0003 0.0010 0.0050 0.0105 0.0106 0.0088 0.0058 0.0029 0.0009 (9.5,10) 0.0000 0.0002 0.0009 0.0027 0.0041 0.0047 0.0046 0.0033 0.0014 (2,0) 0.0495 0.1201 0.1935 0.1197 0.0360 0.0086 0.0013 0.0004 0.0001 (3,1) 0.0090 0.0308 0.0941 0.0932 0.0440 0.0156 0.0034 0.0011 0.0003 (4.5,2.5) 0.0020 0.0077 0.0343 0.0559 0.0407 0.0206 0.0056 0.0020 0.0006 (7,5) 0.0005 0.0018 0.0097 0.0238 0.0263 0.0196 0.0075 0.0029 0.0009 (12,10) 0.0000 0.0003 0.0019 0.0062 0.0097 0.0107 0.0073 0.0034 0.0014 (5,0) 0.0284 0.0756 0.1715 0.1936 0.1302 0.0586 0.0054 0.0004 0.0001 (6,1) 0.0070 0.0247 0.0892 0.1349 0.1116 0.0635 0.0097 0.0012 0.0003 (7.5,2.5) 0.0020 0.0077 0.0371 0.0778 0.0816 0.0595 0.0151 0.0020 0.0006 (10,5) 0.0005 0.0022 0.0120 0.0336 0.0458 0.0436 0.0195 0.0031 0.0009 (15,10) 0.0001 0.0005 0.0027 0.0092 0.0160 0.0200 0.0169 0.0041 0.0014…”
Section: Boundingunclassified
“…Table 3: Relative error in approximatingt µ,ν (x)/t µ−1,ν−1 (x) by the lower bound of (3.38). 0.0101 0.0313 0.0593 0.0285 0.0122 0.0067 0.0031 0.0011 0.0003 (2,2.5) 0.0015 0.0054 0.0200 0.0244 0.0144 0.0093 0.0049 0.0020 0.0006 (4.5,5) 0.0003 0.0010 0.0050 0.0105 0.0106 0.0088 0.0058 0.0029 0.0009 (9.5,10) 0.0000 0.0002 0.0009 0.0027 0.0041 0.0047 0.0046 0.0033 0.0014 (2,0) 0.0495 0.1201 0.1935 0.1197 0.0360 0.0086 0.0013 0.0004 0.0001 (3,1) 0.0090 0.0308 0.0941 0.0932 0.0440 0.0156 0.0034 0.0011 0.0003 (4.5,2.5) 0.0020 0.0077 0.0343 0.0559 0.0407 0.0206 0.0056 0.0020 0.0006 (7,5) 0.0005 0.0018 0.0097 0.0238 0.0263 0.0196 0.0075 0.0029 0.0009 (12,10) 0.0000 0.0003 0.0019 0.0062 0.0097 0.0107 0.0073 0.0034 0.0014 (5,0) 0.0284 0.0756 0.1715 0.1936 0.1302 0.0586 0.0054 0.0004 0.0001 (6,1) 0.0070 0.0247 0.0892 0.1349 0.1116 0.0635 0.0097 0.0012 0.0003 (7.5,2.5) 0.0020 0.0077 0.0371 0.0778 0.0816 0.0595 0.0151 0.0020 0.0006 (10,5) 0.0005 0.0022 0.0120 0.0336 0.0458 0.0436 0.0195 0.0031 0.0009 (15,10) 0.0001 0.0005 0.0027 0.0092 0.0160 0.0200 0.0169 0.0041 0.0014…”
Section: Boundingunclassified
“…Other results concerning Amos type inequality or Simpson-Spector type inequality can be found in [25], [5], [6], [7], [8] and references therein..…”
Section: ) Is Called As Simpson-spector Type Inequality For W ν (X) mentioning
confidence: 99%
“…To show the second part of Theorem 2 let R = c √ n. We will also need the following bounds on h v (x) [18], [19]:…”
Section: A Proof Of Theoremmentioning
confidence: 99%